Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
J Chem Inf Model ; 64(7): 2681-2694, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38386417

RESUMO

Despite recent advances in computational protein science, the dynamic behavior of proteins, which directly governs their biological activity, cannot be gleaned from sequence information alone. To overcome this challenge, we propose a framework that integrates the peptide sequence, protein structure, and protein dynamics descriptors into machine learning algorithms to enhance their predictive capabilities and achieve improved prediction of the protein variant function. The resulting machine learning pipeline integrates traditional sequence and structure information with molecular dynamics simulation data to predict the effects of multiple point mutations on the fold improvement of the activity of bovine enterokinase variants. This study highlights how the combination of structural and dynamic data can provide predictive insights into protein functionality and address protein engineering challenges in industrial contexts.


Assuntos
Enteropeptidase , Proteínas , Animais , Bovinos , Enteropeptidase/metabolismo , Proteínas/química , Algoritmos , Aprendizado de Máquina , Sequência de Aminoácidos
2.
J Biol Chem ; 299(12): 105363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863262

RESUMO

Metformin is among the most prescribed medications worldwide and the first-line therapy for type 2 diabetes. However, gastrointestinal side effects are common and can be dose limiting. The total daily metformin dose frequently reaches several grams, and poor absorption results in high intestinal drug concentrations. Here, we report that metformin inhibits the activity of enteropeptidase and other digestive enzymes at drug concentrations predicted to occur in the human duodenum. Treatment of mouse gastrointestinal tissue with metformin reduces enteropeptidase activity; further, metformin-treated mice exhibit reduced enteropeptidase activity, reduced trypsin activity, and impaired protein digestion within the intestinal lumen. These results indicate that metformin-induced protein maldigestion could contribute to the gastrointestinal side effects and other impacts of this widely used drug.


Assuntos
Enteropeptidase , Metformina , Proteólise , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Enteropeptidase/metabolismo , Metformina/efeitos adversos , Metformina/farmacologia , Metformina/uso terapêutico , Proteólise/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Trato Gastrointestinal/enzimologia , Tripsina/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
3.
Bioorg Med Chem ; 93: 117462, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683572

RESUMO

Enteropeptidase is located in the duodenum that involved in intestinal protein digestion. We have reported enteropeptidase inhibitors with low systemic exposure. The aim of this study was to discover novel enteropeptidase inhibitors showing more potent in vivo efficacy while retaining low systemic exposure. Inhibitory mechanism-based drug design led us to cyclize ester 2 to medium-sized lactones, showing potent enteropeptidase inhibitory activity and improving the ester stability, thus increasing fecal protein output in vivo. Optimization on the linker between two benzene rings resulted in discovery of ether lactone 6b, exhibiting further enhanced enteropeptidase inhibitory activity and long duration of inhibitory state. Oral administration of 6b in mice significantly elevated fecal protein output compared with the lead 2. In addition, 6b showed low systemic exposure along with low intestinal absorption. Furthermore, we identified the 10-membered lactonization method for scale-up synthesis of 6b, which does not require high-dilution conditions.


Assuntos
Desenho de Fármacos , Enteropeptidase , Animais , Camundongos , Administração Oral , Ésteres , Éteres , Lactonas/farmacologia
4.
FASEB J ; 37(10): e23201, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37732618

RESUMO

Depletion of gut microbiota is associated with inefficient energy extraction and reduced production of short-chain fatty acids from dietary fibers, which regulates colonic proglucagon (Gcg) expression and small intestinal transit in mice. However, the mechanism by which the gut microbiota influences dietary protein metabolism and its corresponding effect on the host physiology is poorly understood. Enteropeptidase inhibitors block host protein digestion and reduce body weight gain in diet-induced obese rats and mice, and therefore they constitute a new class of drugs for targeting metabolic diseases. Enteroendocrine cells (EECs) are dispersed throughout the gut and possess the ability to sense dietary proteins and protein-derived metabolites. Despite this, it remains unclear if enteropeptidase inhibition affects EECs function. In this study, we fed conventional and antibiotic treated mice a western style diet (WSD) supplemented with an enteropeptidase inhibitor (WSD-ETPi), analyzed the expression of gut hormones along the length of the intestine, and measured small intestinal transit under different conditions. The ETPi-supplemented diet promoted higher Gcg expression in the colon and increased circulating Glucagon like peptide-1 (GLP-1) levels, but only in the microbiota-depleted mice. The increase in GLP-1 levels resulted in slower small intestinal transit, which was subsequently reversed by administration of GLP-1 receptor antagonist. Interestingly, small intestinal transit was normalized when an amino acid-derived microbial metabolite, p-cresol, was supplemented along with WSD-ETPi diet, primarily attributed to the reduction of colonic Gcg expression. Collectively, our data suggest that microbial dietary protein metabolism plays an important role in host physiology by regulating GLP-1-mediated intestinal transit.


Assuntos
Enteropeptidase , Peptídeo 1 Semelhante ao Glucagon , Camundongos , Ratos , Animais , Proteínas na Dieta , Suplementos Nutricionais , Aminoácidos
5.
Protein Expr Purif ; 206: 106255, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822453

RESUMO

Recombinant human neutrophil elastase (rHNE), a serine protease, was expressed in Pichia pastoris. Glycosylation sites were removed via bioengineering to prevent hyper-glycosylation (a common problem with this system) and the cDNA was codon optimized for translation in Pichia pastoris. The zymogen form of rHNE was secreted as a fusion protein with an N-terminal six histidine tag followed by the heme binding domain of Cytochrome B5 (CytB5) linked to the N-terminus of the rHNE sequence via an enteropeptidase cleavage site. The CytB5 fusion balanced the very basic rHNE (pI = 9.89) to give a colored fusion protein (pI = 6.87), purified via IMAC. Active rHNE was obtained via enteropeptidase cleavage, and purified via cation exchange chromatography, resulting in a single protein band on SDS PAGE (Mr = 25 KDa). Peptide mass fingerprinting analysis confirmed the rHNE amino acid sequence, the absence of glycosylation and the absence of an 8 amino acid C-terminal peptide as opposed to the 20 amino acids usually missing from the C-terminus of native enzyme. The yield of active rHNE was 0.41 mg/L of baffled shaker flask culture medium. Active site titration with alpha-1 antitrypsin, a potent irreversible elastase inhibitor, quantified the concentration of purified active enzyme. The Km of rHNE with methoxy-succinyl-AAPVpNA was identical with that of the native enzyme within the assay's limit of accuracy. This is the first report of full-length rHNE expression at high yields and low cost facilitating further studies on this major human neutrophil enzyme.


Assuntos
Citocromos b5 , Elastase de Leucócito , Humanos , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Citocromos b5/metabolismo , Enteropeptidase/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Peptídeos/metabolismo
6.
Nat Commun ; 13(1): 6955, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376282

RESUMO

Enteropeptidase (EP) initiates intestinal digestion by proteolytically processing trypsinogen, generating catalytically active trypsin. EP dysfunction causes a series of pancreatic diseases including acute necrotizing pancreatitis. However, the molecular mechanisms of EP activation and substrate recognition remain elusive, due to the lack of structural information on the EP heavy chain. Here, we report cryo-EM structures of human EP in inactive, active, and substrate-bound states at resolutions from 2.7 to 4.9 Å. The EP heavy chain was observed to clamp the light chain with CUB2 domain for substrate recognition. The EP light chain N-terminus induced a rearrangement of surface-loops from inactive to active conformations, resulting in activated EP. The heavy chain then served as a hinge for light-chain conformational changes to recruit and subsequently cleave substrate. Our study provides structural insights into rearrangements of EP surface-loops and heavy chain dynamics in the EP catalytic cycle, advancing our understanding of EP-associated pancreatitis.


Assuntos
Enteropeptidase , Tripsinogênio , Humanos , Enteropeptidase/química , Microscopia Crioeletrônica , Tripsina
7.
Sci Rep ; 12(1): 17721, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271247

RESUMO

Bovine enterokinase light chain (EKL) is an industrially useful protease for accurate removal of affinity-purification tags from high-value biopharmaceuticals. However, recombinant expression in Escherichia coli produces insoluble inclusion bodies, requiring solubilisation, refolding, and autocatalytic activation to recover functional enzyme. Error-prone PCR and DNA shuffling of the EKL gene, T7 promoter, lac operon, ribosome binding site, and pelB leader sequence, yielded 321 unique variants after screening ~ 6500 colonies. The best variants had > 11,000-fold increased total activity in lysates, producing soluble enzyme that no longer needed refolding. Further characterisation identified the factors that improved total activity from an inactive and insoluble starting point. Stability was a major factor, whereby melting temperatures > 48.4 °C enabled good expression at 37 °C. Variants generally did not alter catalytic efficiency as measured by kcat/Km, which improved for only one variant. Codon optimisation improved the total activity in lysates produced at 37 °C. However, non-optimised codons and expression at 30 °C gave the highest activity through improved protein quality, with increased kcat and Tm values. The 321 variants were statistically analysed and mapped to protein structure. Mutations detrimental to total activity and stability clustered around the active site. By contrast, variants with increased total activity tended to combine stabilising mutations that did not disrupt the active site.


Assuntos
Produtos Biológicos , Enteropeptidase , Bovinos , Animais , Enteropeptidase/genética , Enteropeptidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Periplasma/metabolismo , Produtos Biológicos/metabolismo , Proteínas Recombinantes/metabolismo
8.
Sci Rep ; 12(1): 15535, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109576

RESUMO

The interphotoreceptor matrix (IPM) is a specialized extracellular mesh of molecules surrounding the inner and outer segments of photoreceptor neurons. Interphotoreceptor matrix proteoglycan 1 and 2 (IMPG1 and IMPG2) are major components of the IPM. Both proteoglycans possess SEA (sperm protein, enterokinase and agrin) domains, which may support proteolysis. Interestingly, mutations in the SEA domains of IMPG1 and IMPG2 are associated with vision disease in humans. However, if SEA domains in IMPG molecules undergo proteolysis, and how this contributes to vision pathology is unknown. Therefore, we investigated SEA-mediated proteolysis of IMPG1 and IMPG2 and its significance to IPM physiology. Immunoblot analysis confirmed proteolysis of IMPG1 and IMPG2 in the retinas of wildtype mice. Point mutations mimicking human mutations in the SEA domain of IMPG1 that are associated with vision disease inhibited proteolysis. These findings demonstrate that proteolysis is part of the maturation of IMPG1 and IMPG2, in which deficits are associated with vision diseases. Further, immunohistochemical assays showed that proteolysis of IMPG2 generated two subunits, a membrane-attached peptide and an extracellular peptide. Notably, the extracellular portion of IMPG2 trafficked from the IPM around the inner segment toward the outer segment IPM by an IMPG1-dependent mechanism. This result provides the first evidence of a trafficking system that shuttles IMPG1 and IMPG2 from the inner to outer IPM in a co-dependent manner. In addition, these results suggest an interaction between IMPG1-IMPG2 and propose that mutations affecting one IMPG could affect the localization of the normal IMPG partner, contributing to the disease mechanism of vision diseases associated with defective IMPG molecules.


Assuntos
Agrina , Enteropeptidase , Animais , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Humanos , Masculino , Camundongos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Sêmen/metabolismo
9.
J Med Chem ; 65(12): 8456-8477, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35686954

RESUMO

To discover a novel series of potent inhibitors of enteropeptidase, a membrane-bound serine protease localized to the duodenal brush border, 4-guanidinobenzoate derivatives were evaluated with minimal systemic exposure. The 1c docking model enabled the installation of an additional carboxylic acid moiety to obtain an extra interaction with enteropeptidase, yielding 2a. The oral administration of 2a significantly elevated the fecal protein output, a pharmacodynamic marker, in diet-induced obese (DIO) mice, whereas subcutaneous administration did not change this parameter. Thus, systemic exposure of 2a was not required for its pharmacological effects. Further optimization focusing on the in vitro IC50 value and T1/2, an indicator of dissociation time, followed by enhanced in vivo pharmacological activity based on the ester stability of the compounds, revealed two series of potent enteropeptidase inhibitors, a dihydrobenzofuran analogue ((S)-5b, SCO-792) and phenylisoxazoline (6b), which exhibited potent anti-obesity effects despite their low systemic exposure following their oral administration to DIO rats.


Assuntos
Enteropeptidase , Obesidade , Animais , Benzoatos , Enteropeptidase/metabolismo , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos
10.
J Appl Microbiol ; 133(2): 1001-1013, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35578999

RESUMO

AIMS: The aim of this study was to construct the improved pMAL expression vector to increase the efficacy of purification of small native peptides and their clear-cut separation from MBP tag. The modifications we introduced can be applied to many expression vectors. METHODS AND RESULTS: To improve the pMAL expression vector, we introduced the His6 tag and the enterokinase cleavage site (Ek) downstream from the MBP tag and Xa cleavage site on the original vector. For cloning of a desired peptide DNA, the enterokinase site contains a unique BsaBI restriction site adjacent to the original multi-cloning site. This redesigned pMAL vector was optimized for the purification of cytoplasmic (pMALc5HisEk) and periplasmic (pMALp5HisEk) peptides. The purification of native and active peptide (P) was obtained following two-step affinity chromatography. In the first step, the entire MBP-His6 -Ek-P fusion protein is purified using the Ni-NTA agarose column. This fusion protein was cleaved with active His6 tagged enterokinase. In the second step, the further purification was performed by column containing the mixture of amylose and Ni-NTA agarose resins. This removes both the MBP-His6 and His6 -enterokinase leaving pure native protein in solution. These new vectors and the two-step purification protocol were successfully applied in purification of active native small antimicrobial peptides (AMPs), lactococcin A and human ß-defensin. CONCLUSIONS: We constructed the improved pMAL expression vectors and established the pipeline and optimal conditions for their use in efficient purification of large amounts of active native small peptides. SIGNIFICANCE AND IMPACT OF THE STUDY: Choice of expression vector impacts on the efficiency of expression and purification of desired proteins. The idea of redesigning pMAL vector was driven by the need for rapid purification of larger amounts of active native AMPs. This newly improved pMAL vector, the cloning strategy, expression conditions and two-step purification protocol represent a unique simple approach which can be applied in every laboratory.


Assuntos
Peptídeos Antimicrobianos , Enteropeptidase , Cromatografia de Afinidade/métodos , Clonagem Molecular , Enteropeptidase/genética , Escherichia coli/genética , Vetores Genéticos/genética , Humanos , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sefarose/química , Sefarose/metabolismo
11.
Protein J ; 41(1): 157-165, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35091895

RESUMO

Enterokinase enzyme is widely used in production of recombinant proteins. This enzyme is isolated from the intestine and recognizes a specific cleavage site (X↓LYS-ASP4). Several studies have been performed to produce recombinant active enterokinase. In this study, the coding sequence of bovine enteropeptidase light chain (bEKL) was isolated from Iranian Sarabi cattle and its expression was investigated in the periplasm and cytoplasm of E. coli by two different expression vectors, pET22 and pET32RH. RNA was extracted from the duodenum part of cattle, cDNA was amplified, the enterokinase light chain coding fragment was cloned and the expression was examined by SDS-PAGE analysis. The higher amounts of soluble enterokinase as a fusion with thioredoxin (Trx) were detected in cytoplasmic expression. The functional enterokinase was purified with a yield of 45 mg per litter by two-steps Ni2+ affinity chromatography. The effective activity of the enzyme implies that it can be produced in large scale for biotechnological applications.


Assuntos
Enteropeptidase , Periplasma , Animais , Bovinos , Citoplasma/genética , Citoplasma/metabolismo , Enteropeptidase/química , Enteropeptidase/genética , Enteropeptidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Irã (Geográfico) , Periplasma/metabolismo , Proteínas Recombinantes de Fusão/química
12.
J Biotechnol ; 340: 57-63, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506803

RESUMO

Enterokinase is one of the hydrolases that catalyze hydrolysis to regulate biological processes in intestinal visceral mucosa. Enterokinase plays an essential role in accelerating the process of protein digestion as it converts trypsinogen into active trypsin by accurately recognizing and cleaving a specific peptide sequence, (Asp)4-Lys. Due to its exceptional substrate specificity, enterokinase is widely used as a versatile molecular tool in various bioprocessing, especially in removing fusion tags from recombinant proteins. Despite its biotechnological importance, mass production of soluble enterokinase in bacteria still remains an unsolved challenge. Here, we present an effective production strategy of human enterokinase using tandemly linked solubility enhancers consisting of thioredoxin, phosphoglycerate kinase or maltose-binding protein. The resulting enterokinases exhibited significantly enhanced solubility and bacterial expression level while retaining enzymatic activity, which demonstrates that combinatorial design of fusion proteins has the potential to provide an efficient way to produce recombinant proteins in bacteria.


Assuntos
Enteropeptidase , Escherichia coli , Sequência de Aminoácidos , Enteropeptidase/genética , Enteropeptidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Solubilidade
13.
Protein J ; 40(6): 907-916, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586553

RESUMO

Enteropeptidase is a duodenum serine protease that triggers the activation of pancreatic enzymes by remarkably specific cleavages after lysine residues of peptidyl substrate (Asp)4-Lys. This high specific cleavage makes the enzyme a widely used biotechnological tool in laboratory researches and industrial scale. Previous studies both in small and large scales were showed low expression and miss-folding of the expressed protein. In this study, the DNA sequence encoding the light chain (catalytic subunit) of bovine enteropeptidase (EPL) was subcloned into plasmid pET-32b, downstream to the DNA encoding the fusion partner thioredoxin immediately after the EPL cleavage site. SHuffle® T7 Express was selected as an expression host due to the ability to promote proper folding and correction of the mis-oxidized bonds. Expression and purification of protein was performed, and the result of biological activity confirmed that the active EPL was obtained. Optimization of protein expression conditions was accomplished by response surface methodology for significant factors including induction temperature, duration of induction, inducer concentration and OD600 of induction. The best conditions were achieved in 1.05 mM IPTG at OD600 of 0.6 for seven h incubation at 26.5 °C, and a high level of protein expression was obtained in the optimized condition.


Assuntos
Enteropeptidase , Animais , Domínio Catalítico , Bovinos , Enteropeptidase/genética , Enteropeptidase/metabolismo , Cinética , Plasmídeos
15.
BMC Biotechnol ; 21(1): 19, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678175

RESUMO

BACKGROUND: The aim of this study was to provide an information about the homogeneity on the level of enterokinase productivity in P. pastoris depending on different suppliers of the media components. RESULTS: In previous studies, we performed the optimisation process for the production of enterokinase by improving the fermentation process. Enterokinase is the ideal enzyme for removing fusion partners from target recombinant proteins. In this study, we focused our optimization efforts on the sources of cultivation media components. YPD media components were chosen as variables for these experiments. Several suppliers for particular components were combined and the optimisation procedure was performed in 24-well plates. Peptone had the highest impact on enterokinase production, where the difference between the best and worst results was threefold. The least effect on the production level was recorded for yeast extract with a 1.5 fold difference. The worst combination of media components had a activity of only 0.15 U/ml and the best combination had the activity of 0.88 U/ml, i.e., a 5.87 fold difference. A substantially higher impact on the production level of enterokinase was observed during fermentation in two selected media combinations, where the difference was almost 21-fold. CONCLUSIONS: Results demonstrated in the present study show that the media components from different suppliers have high impact on enterokinase productivity and also provide the hypothesis that the optimization process should be multidimensional and for achieving best results it is important to perform massive process also in terms of the particular media component supplier .


Assuntos
Meios de Cultura/química , Enteropeptidase/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomycetales/enzimologia , Meios de Cultura/metabolismo , Enteropeptidase/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo
17.
Bioorg Med Chem Lett ; 40: 127939, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713780

RESUMO

A novel series of guanidinebenzoate enteropeptidase and trypsin dual inhibitors has been discovered and SAR studies were conducted. Optimization was focused on improving properties for gut restriction, including increased aqueous solubility, lower cellular permeability, and reduced oral bioavailability. Lead compounds were identified with efficacy in a mouse fecal protein excretion study.


Assuntos
Benzoatos/farmacologia , Enteropeptidase/antagonistas & inibidores , Guanidinas/farmacologia , Inibidores da Tripsina/farmacologia , Animais , Benzoatos/síntese química , Benzoatos/farmacocinética , Células CHO , Bovinos , Cricetulus , Dieta Hiperlipídica , Fezes/química , Guanidinas/síntese química , Guanidinas/farmacocinética , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/enzimologia , Camundongos Endogâmicos C57BL , Estrutura Molecular , Obesidade/tratamento farmacológico , Obesidade/enzimologia , Proteínas/metabolismo , Relação Estrutura-Atividade , Inibidores da Tripsina/síntese química , Inibidores da Tripsina/farmacocinética
18.
Diabetes Obes Metab ; 23(1): 86-96, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893449

RESUMO

AIM: To examine the effects of an enteropeptidase inhibitor, SCO-792, on kidney function in rats. MATERIALS AND METHODS: The pharmacological effects of SCO-792 were evaluated in Wistar fatty (WF) rats, a rat model of diabetic kidney disease (DKD). RESULTS: Oral administration of SCO-792 increased faecal protein content and improved glycaemic control in WF rats. SCO-792 elicited a rapid decrease in urine albumin-to-creatinine ratio (UACR). SCO-792 also normalized glomerular hyperfiltration and decreased fibrosis, inflammation and tubular injury markers in the kidneys. However, pioglitazone-induced glycaemic improvement had no effect on kidney variables. Dietary supplementation of amino acids (AAs), which bypass the action of enteropeptidase inhibition, mitigated the effect of SCO-792 on UACR reduction, suggesting a pivotal role for enteropeptidase. Furthermore, autophagy activity in the glomerulus, which is impaired in DKD, was elevated in SCO-792-treated rats. Finally, a therapeutically additive effect on UACR reduction was observed with a combination of SCO-792 with irbesartan, an angiotensin II receptor blocker. CONCLUSIONS: This study is the first to demonstrate that enteropeptidase inhibition is effective in improving disease conditions in DKD. SCO-792-induced therapeutic efficacy is likely to be independent of glycaemic control and mediated by the regulation of AAs and autophagy. Taken together with a combination effect of irbesartan, SCO-792 may be a novel therapeutic option for patients with DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Enteropeptidase/antagonistas & inibidores , Rim , Animais , Nefropatias Diabéticas/tratamento farmacológico , Glomérulos Renais , Ratos , Ratos Wistar
19.
Clin Otolaryngol ; 46(1): 175-180, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32871030

RESUMO

OBJECTIVES: Laryngeal dysplasia (LD) is a precancerous lesion of the larynx. In this study, the laryngeal tissue of patients with laryngeal dysplasia was taken as the research object, and the aetiology of reflux was analysed. METHOD: Patients with laryngeal dysplasia after surgery were selected as our subjects. The levels of pepsin, enterokinase and bilirubin in laryngeal tissue samples of the two groups were detected by immunohistochemical method. RESULTS: The OR values (95% CI) of pepsin, enterokinase and bilirubin were 0.67 (0.19-2.36), 0.80 (0.22-2.98) and 1.33 (0.30-5.96), respectively, in the univariate analysis. Besides, in the multivariate analysis, the OR values (95% CI) of pepsin, enterokinase and bilirubin were 0.57 (0.14-2.30), 0.73 (0.18-2.92) and 1.40 (0.30-6.53), respectively. CONCLUSION: Larger sample size should be applied to prospective studies on whether reflux is a risk factor for laryngeal cancer.


Assuntos
Refluxo Gastroesofágico/patologia , Neoplasias Laríngeas/etiologia , Neoplasias Laríngeas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bilirrubina/metabolismo , Estudos de Casos e Controles , Enteropeptidase/metabolismo , Feminino , Refluxo Gastroesofágico/complicações , Refluxo Gastroesofágico/metabolismo , Humanos , Hiperplasia , Neoplasias Laríngeas/metabolismo , Masculino , Pessoa de Meia-Idade , Pepsina A/metabolismo
20.
Pharmacol Res ; 163: 105337, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276106

RESUMO

Enteropeptidase is a transmembrane serine protease localized in the lumen of the duodenum that acts as a key enzyme for protein digestion. SCO-792 is an orally available enteropeptidase inhibitor that has been reported to have therapeutic effects on obesity and diabetes in mice. However, the mechanism underlying the therapeutic effect of SCO-792 has not yet been fully elucidated. In this study, we evaluated the role of gut microbiota on SCO-792-induced body weight (BW) reduction in high-fat diet-induced obese (DIO) mice. Chronic administration of SCO-792 substantially decreased BW and food intake in DIO mice. While the pair-fed study uncovered food intake-independent mechanisms of BW reduction by SCO-792. Interestingly, antibiotics-induced microbiota elimination in the gut canceled SCO-792-induced BW reduction by nearly half without affecting the anorectic effect, indicating the involvement of gut microbiota in the anti-obesity mechanism that is independent of food intake reduction. Microbiome analysis revealed that SCO-792 altered the gut microbiota composition in DIO mice. Notably, it was found that the abundance of Firmicutes decreased while that of Verrucomicrobia increased at the phylum level. Increased abundance of Akkermansia muciniphila, a bacterium known to be useful for host metabolism, was observed in SCO-792-treated mice. Fecal metabolome analysis revealed increased amino acid levels, indicating gut enteropeptidase inhibition. In addition, SCO-792 was found to increase the level of short-chain fatty acids, including propionate, and bile acids in the feces, which all help maintain gut health and improve metabolism. Furthermore, it was found that SCO-792 induced the elevation of colonic immunoglobulin A (IgA) concentration, which may maintain the microbiota condition, in DIO mice. In conclusion, this study demonstrates the contribution of microbiota to SCO-792-induced BW reduction. Enteropeptidase-mediated regulation of microbiota, enterobacterial metabolites, and IgA in the gut may coordinately drive the therapeutic effects of SCO-792 in obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Enteropeptidase/antagonistas & inibidores , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Akkermansia/genética , Animais , Fármacos Antiobesidade/farmacologia , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica , Dieta Ocidental , Enterobacteriaceae/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Imunoglobulina A/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...